Skip to content
Paper Copilot™, originally my personal project, is now open to the public. I deeply appreciate your feedback and support.
twitter x github-circle reddit

Paper Copilot Paper Copilot™ Research Toolbox
  • Statistics
    • AI/ML
      • AAAI
        • 2025
      • ICLR
        • 2025
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2013
        • 2014
      • ICML
        • 2024
        • 2023
      • NeurIPS
        • 2024
          • Main Conference
          • Datasets & Benchmarks
          • Creative AI
          • High School Projects
        • 2023
          • Main Conference
          • Datasets & Benchmarks
        • 2022
          • Main Conference
          • Datasets & Benchmarks
        • 2021
          • Main Conference
          • Datasets & Benchmarks
      • UAI
        • 2024
    • Data Mining
      • KDD
        • 2024
          • Research Track
          • Applied Data Science Track
        • 2025
          • Research Track
          • Applied Data Science Track
    • Graphics
      • SIGGRAPH
      • SIGGRAPH Asia
    • Multimedia
      • ACMMM
        • 2024
    • NLP
      • ACL
        • 2024
      • COLM
        • 2024
      • EMNLP
        • 2024
        • 2023
    • Robotics
      • CoRL
        • 2024
        • 2023
        • 2022
        • 2021
      • ICRA
        • 2025
      • IROS
        • 2025
      • RSS
        • 2025
    • Vision
      • 3DV
        • 2025
      • CVPR
        • 2025
      • ECCV
        • 2024
      • ICCV
      • WACV
        • 2025
  • Accepted Papers
    • AI/ML
      • ICLR
        • 2025
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2014
        • 2013
      • NeurIPS
        • 2024
          • Main Conference
          • Dataset & Benchmark
        • 2023
          • Main Conference
          • Dataset & Benchmark
        • 2022
          • Main Conference
          • Dataset & Benchmark
        • 2021
          • Main Conference
          • Dataset & Benchmark
      • ICML
        • 2024
        • 2023
    • Graphics
      • SIGGRAPH
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
      • SIGGRAPH Asia
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
    • Vision
      • CVPR
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • ICCV
        • 2023
        • 2021
        • 2019
        • 2017
        • 2015
        • 2013
      • ECCV
        • 2024
        • 2022
        • 2020
        • 2018
      • WACV
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
  • Countdown
  • Map
    • 3D
    • 2D
  • Contact Us
    • About Us
    • Acknowledgment
    • Report Issues
  • twitter x github-circle reddit

Category: CS

Home » CS » Page 4

MIPNet: Neural Normal-to-Anisotropic-Roughness MIP mapping

Material Representation

Alban Gauthier, Robin Faury, Jérémy Levallois, Théo Thonat, Jean-Marc Thiery, Tamy Boubekeur

Adobe; Télécom Paris

Portals
  • pdf
  • mipnet_neural_m...
  • ACM
Abstract

We present MIPNet, a novel approach for SVBRDF mipmapping which preserves material appearance under varying view distances and lighting conditions. As in classical mipmapping, our method explicitly encodes the multiscale appearance of materials in a SVBRDF mipmap pyramid. To do so, we use a tensor-based representation, coping with gradient-based optimization, for encoding anisotropy which is compatible with existing real-time rendering engines. Instead of relying on a simple texture patch average for each channel independently, we propose a cascaded architecture of multilayer perceptrons to approximate the material appearance using only the fixed material channels. Our neural model learns simple mipmapping filters using a differentiable rendering pipeline based on a rendering loss and is able to transfer signal from normal to anisotropic roughness. As a result, we obtain a drop-in replacement for standard material mipmapping, offering a significant improvement in appearance preservation while still boiling down to a single per-pixel mipmap texture fetch. We report extensive experiments on two distinct BRDF models.

Related Works

Texture minification; Normal map filtering; Rendering high-resolution normal maps; Reflectance filtering; Differentiable rendering

2022 SIGGRAPH ASIA

Metappearance: Meta-Learning for Visual Appearance Reproduction

Material Representation

Michael Fischer, Tobias Ritschel

University College London

Portals
  • pdf
  • YouTube
  • Project
  • metappearance
  • arXiv
  • Publisher
Abstract

There currently exist two main approaches to reproducing visual appearance using Machine Learning (ML): The first is training models that generalize over different instances of a problem, e.g., different images of a dataset. As one-shot approaches, these offer fast inference, but often fall short in quality. The second approach does not train models that generalize across tasks, but rather over-fit a single instance of a problem, e.g., a flash image of a material. These methods offer high quality, but take long to train. We suggest to combine both techniques end-to-end using meta-learning: We over-fit onto a single problem instance in an inner loop, while also learning how to do so efficiently in an outer-loop across many exemplars. To this end, we derive the required formalism that allows applying meta-learning to a wide range of visual appearance reproduction problems: textures, BRDFs, svBRDFs, illumination or the entire light transport of a scene. The effects of meta-learning parameters on several different aspects of visual appearance are analyzed in our framework, and specific guidance for different tasks is provided. Metappearance enables visual quality that is similar to over-fit approaches in only a fraction of their runtime while keeping the adaptivity of general models.

Related Works

Visual Appearance; Learning; General Learning; Over-fit Optimization; Fine-tuning; Hyper- and meta-learning

2022 SIGGRAPH ASIA

Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

GAN Image Synthesis

Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, Christian Theobalt

Portals
  • pdf
  • YouTube
  • Project
  • DragGAN
  • arXiv
  • Paperswithcode
  • Publisher
Abstract

Synthesizing visual content that meets users' needs often requires flexible and precise controllability of the pose, shape, expression, and layout of the generated objects. Existing approaches gain controllability of generative adversarial networks (GANs) via manually annotated training data or a prior 3D model, which often lack flexibility, precision, and generality. In this work, we study a powerful yet much less explored way of controlling GANs, that is, to "drag" any points of the image to precisely reach target points in a user-interactive manner, as shown in Fig.1. To achieve this, we propose DragGAN, which consists of two main components: 1) a feature-based motion supervision that drives the handle point to move towards the target position, and 2) a new point tracking approach that leverages the discriminative generator features to keep localizing the position of the handle points. Through DragGAN, anyone can deform an image with precise control over where pixels go, thus manipulating the pose, shape, expression, and layout of diverse categories such as animals, cars, humans, landscapes, etc. As these manipulations are performed on the learned generative image manifold of a GAN, they tend to produce realistic outputs even for challenging scenarios such as hallucinating occluded content and deforming shapes that consistently follow the object's rigidity. Both qualitative and quantitative comparisons demonstrate the advantage of DragGAN over prior approaches in the tasks of image manipulation and point tracking. We also showcase the manipulation of real images through GAN inversion.

Related Works

Generative Models for Interactive Content Creation; Unconditional GANs; Conditional GANs; Controllability using Unconditional GANs; 3D-aware GANs; Diffusion Models; Point Tracking

2023 SIGGRAPH

BakedSDF: Meshing Neural SDFs for Real-time View Synthesis

Material Estimation
Error: Cannot create object