Skip to content
Paper Copilotâ„¢, originally my personal project, is now open to the public. I deeply appreciate your feedback and support.
twitter x github-circle reddit

Paper Copilot Paper Copilotâ„¢ Research Toolbox
  • Statistics
    • AI/ML
      • AAAI
        • 2025
      • ICLR
        • 2025
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2013
        • 2014
      • ICML
        • 2024
        • 2023
      • NeurIPS
        • 2024
          • Main Conference
          • Datasets & Benchmarks
          • Creative AI
          • High School Projects
        • 2023
          • Main Conference
          • Datasets & Benchmarks
        • 2022
          • Main Conference
          • Datasets & Benchmarks
        • 2021
          • Main Conference
          • Datasets & Benchmarks
      • UAI
        • 2024
    • Data Mining
      • KDD
        • 2024
          • Research Track
          • Applied Data Science Track
        • 2025
          • Research Track
          • Applied Data Science Track
    • Graphics
      • SIGGRAPH
      • SIGGRAPH Asia
    • Multimedia
      • ACMMM
        • 2024
    • NLP
      • ACL
        • 2024
      • COLM
        • 2024
      • EMNLP
        • 2024
        • 2023
    • Robotics
      • CoRL
        • 2024
        • 2023
        • 2022
        • 2021
      • ICRA
        • 2025
      • IROS
        • 2025
      • RSS
        • 2025
    • Vision
      • 3DV
        • 2025
      • CVPR
        • 2025
      • ECCV
        • 2024
      • ICCV
      • WACV
        • 2025
  • Accepted Papers
    • AI/ML
      • ICLR
        • 2025
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2014
        • 2013
      • NeurIPS
        • 2024
          • Main Conference
          • Dataset & Benchmark
        • 2023
          • Main Conference
          • Dataset & Benchmark
        • 2022
          • Main Conference
          • Dataset & Benchmark
        • 2021
          • Main Conference
          • Dataset & Benchmark
      • ICML
        • 2024
        • 2023
    • Graphics
      • SIGGRAPH
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
      • SIGGRAPH Asia
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
    • Vision
      • CVPR
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • ICCV
        • 2023
        • 2021
        • 2019
        • 2017
        • 2015
        • 2013
      • ECCV
        • 2024
        • 2022
        • 2020
        • 2018
      • WACV
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
  • Countdown
  • Map
    • 3D
    • 2D
  • Contact Us
    • About Us
    • Acknowledgment
    • Report Issues
  • twitter x github-circle reddit

Tag: ICCV

Home » ICCV

Instruct-NeRF2NeRF: Editing 3D Scenes with Instructions

NeRF Scene Editing

Ayaan Haque, Matthew Tancik, Alexei A. Efros, Aleksander Holynski, Angjoo Kanazawa

UC Berkeley

Portals
  • pdf
  • Project
  • instruct-nerf2n...
  • arXiv
  • Paperswithcode
  • CVF
Abstract

We propose a method for editing NeRF scenes with text-instructions. Given a NeRF of a scene and the collection of images used to reconstruct it, our method uses an image-conditioned diffusion model (InstructPix2Pix) to iteratively edit the input images while optimizing the underlying scene, resulting in an optimized 3D scene that respects the edit instruction. We demonstrate that our proposed method is able to edit large-scale, real-world scenes, and is able to accomplish more realistic, targeted edits than prior work.

Related Works

Physical Editing of NeRFs; Artistic Stylization of NeRFs; Generating 3D Content; Instruction as an Editing Interface

Comparisons

NeRF-Art

2023 ICCV

Blended-NeRF: Zero-Shot Object Generation and Blending in Existing Neural Radiance Fields

NeRF Scene Editing

Ori Gordon, Omri Avrahami, Dani Lischinski

The Hebrew University of Jerusalem

Portals
  • pdf
  • Project
  • BlendNeRF
  • arXiv
  • Paperswithcode
  • CVF
Abstract

Editing a local region or a specific object in a 3D scene represented by a NeRF is challenging, mainly due to the implicit nature of the scene representation. Consistently blending a new realistic object into the scene adds an additional level of difficulty. We present Blended-NeRF, a robust and flexible framework for editing a specific region of interest in an existing NeRF scene, based on text prompts or image patches, along with a 3D ROI box. Our method leverages a pretrained language-image model to steer the synthesis towards a user-provided text prompt or image patch, along with a 3D MLP model initialized on an existing NeRF scene to generate the object and blend it into a specified region in the original scene. We allow local editing by localizing a 3D ROI box in the input scene, and seamlessly blend the content synthesized inside the ROI with the existing scene using a novel volumetric blending technique. To obtain natural looking and view-consistent results, we leverage existing and new geometric priors and 3D augmentations for improving the visual fidelity of the final result. We test our framework both qualitatively and quantitatively on a variety of real 3D scenes and text prompts, demonstrating realistic multiview consistent results with much flexibility and diversity compared to the baselines. Finally, we show the applicability of our framework for several 3D editing applications, including adding new objects to a scene, removing/replacing/altering existing objects, and texture conversion.

Related Works

Neural Implicit Representations; NeRF 3D Generation; Editing NeRFs

Comparisons

Volumetric Disentanglement

2023 ICCV

BlendNeRF: 3D-aware Blending with Generative NeRFs

NeRF Scene Editing

Hyunsu Kim, Gayoung Lee, Yunjey Choi, Jin-Hwa Kim, Jun-Yan Zhu

NAVER AI Lab; SNU AIIS; CMU

Portals
  • pdf
  • YouTube
  • Project
  • BlendNeRF
  • arXiv
  • CVF
Abstract

Image blending aims to combine multiple images seamlessly. It remains challenging for existing 2D-based methods, especially when input images are misaligned due to differences in 3D camera poses and object shapes. To tackle these issues, we propose a 3D-aware blending method using generative Neural Radiance Fields (NeRF), including two key components: 3D-aware alignment and 3D-aware blending. For 3D-aware alignment, we first estimate the camera pose of the reference image with respect to generative NeRFs and then perform 3D local alignment for each part. To further leverage 3D information of the generative NeRF, we propose 3D-aware blending that directly blends images on the NeRF\'s latent representation space, rather than raw pixel space. Collectively, our method outperforms existing 2D baselines, as validated by extensive quantitative and qualitative evaluations with FFHQ and AFHQ-Cat.

Related Works

Image blending; 3D-aware generative models; 3D-aware image editing

Comparisons

Poisson Blending, Latent Composition, StyleGAN3, StyleMapGAN, SDEdit

2023 ICCV

ATT3D: Amortized Text-to-3D Object Synthesis

NeRF Pretrained LDM Text-to-3D

Jonathan Lorraine, Kevin Xie, Xiaohui Zeng, Chen-Hsuan Lin, Towaki Takikawa, Nicholas Sharp, Tsung-Yi Lin, Ming-Yu Liu, Sanja Fidler, James Lucas

NVIDIA; University of Toronto; Vector Institute

Portals
  • pdf
  • YouTube
  • Project
  • arXiv
  • Paperswithcode
  • CVF
Abstract

Text-to-3D modeling has seen exciting progress by combining generative text-to-image models with image-to-3D methods like Neural Radiance Fields. DreamFusion recently achieved high-quality results but requires a lengthy, per-prompt optimization to create 3D objects. To address this, we amortize optimization over text prompts by training on many prompts simultaneously with a unified model, instead of separately. With this, we share computation across a prompt set, training in less time than per-prompt optimization. Our framework - Amortized Text-to-3D (ATT3D) - enables sharing of knowledge between prompts to generalize to unseen setups and smooth interpolations between text for novel assets and simple animations.

Related Works

NeRFs for Image-to-3D; Text-to-Image Generation; Text-to-3D (TT3D) Generation; Amortized Optimization; Image-to-3D Models; Text-to-3D Animation

2023 ICCV

Zero-1-to-3: Zero-shot One Image to 3D Object

NeRF Pretrained LDM Text-to-3D

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, Carl Vondrick

Columbia University; Toyota Research Institute

Portals
  • pdf
  • Project
  • zero123
  • arXiv
  • Paperswithcode
  • CVF
Abstract

We introduce Zero-1-to-3, a framework for changing the camera viewpoint of an object given just a single RGB image. To perform novel view synthesis in this under-constrained setting, we capitalize on the geometric priors that large-scale diffusion models learn about natural images. Our conditional diffusion model uses a synthetic dataset to learn controls of the relative camera viewpoint, which allow new images to be generated of the same object under a specified camera transformation. Even though it is trained on a synthetic dataset, our model retains a strong zero-shot generalization ability to out-of-distribution datasets as well as in-the-wild images, including impressionist paintings. Our viewpoint-conditioned diffusion approach can further be used for the task of 3D reconstruction from a single image. Qualitative and quantitative experiments show that our method significantly outperforms state-of-the-art single-view 3D reconstruction and novel view synthesis models by leveraging Internet-scale pre-training.

Related Works

3D generative models; Single-view object reconstruction

Comparisons

DietNeRF, Image Variations, SJC

2023 ICCV

Neural-PBIR Reconstruction of Shape, Material, and Illumination

General Relighting Material Estimation NeRF Shape Estimation
Neural-PBIR Reconstruction of Shape, Material, and Illumination

Cheng Sun, Guangyan Cai, Zhengqin Li, Kai Yan, Cheng Zhang, Carl Marshall, Jia-Bin Huang, Shuang Zhao, Zhao Dong

Meta RLR; National Tsing Hua University; University of California, Irvine; University of Maryland, College Park

Portals
  • pdf
  • Project
  • arXiv
  • Paperswithcode
Abstract

Reconstructing the shape and spatially varying surface appearances of a physical-world object as well as its surrounding illumination based on 2D images (e.g., photographs) of the object has been a long-standing problem in computer vision and graphics. In this paper, we introduce a robust object reconstruction pipeline combining neural based object reconstruction and physics-based inverse rendering (PBIR). Specifically, our pipeline firstly leverages a neural stage to produce high-quality but potentially imperfect predictions of object shape, reflectance, and illumination. Then, in the later stage, initialized by the neural predictions, we perform PBIR to refine the initial results and obtain the final high-quality reconstruction. Experimental results demonstrate our pipeline significantly outperforms existing reconstruction methods quality-wise and performance-wise.

Related Works

Volumetric Surface Reconstruction; Material and Lighting Estimation; Physics-based Inverse Rendering

Comparisons

nvdiffrecmc, MII

2023 ICCV

HED: Holistically-Nested Edge Detection

Edge Detection FCN VGG
Error: Cannot create object