Skip to content
Paper Copilot™, originally my personal project, is now open to the public. I deeply appreciate your feedback and support.
twitter x github-circle reddit

Paper Copilot Paper Copilot™ Research Toolbox
  • Statistics
    • AI/ML
      • AAAI
        • 2025
      • ICLR
        • 2025
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2013
        • 2014
      • ICML
        • 2024
        • 2023
      • NeurIPS
        • 2024
          • Main Conference
          • Datasets & Benchmarks
          • Creative AI
          • High School Projects
        • 2023
          • Main Conference
          • Datasets & Benchmarks
        • 2022
          • Main Conference
          • Datasets & Benchmarks
        • 2021
          • Main Conference
          • Datasets & Benchmarks
      • UAI
        • 2024
    • Data Mining
      • KDD
        • 2024
          • Research Track
          • Applied Data Science Track
        • 2025
          • Research Track
          • Applied Data Science Track
    • Graphics
      • SIGGRAPH
      • SIGGRAPH Asia
    • Multimedia
      • ACMMM
        • 2024
    • NLP
      • ACL
        • 2024
      • COLM
        • 2024
      • EMNLP
        • 2024
        • 2023
    • Robotics
      • CoRL
        • 2024
        • 2023
        • 2022
        • 2021
      • ICRA
        • 2025
      • IROS
        • 2025
      • RSS
        • 2025
    • Vision
      • 3DV
        • 2025
      • CVPR
        • 2025
      • ECCV
        • 2024
      • ICCV
      • WACV
        • 2025
  • Accepted Papers
    • AI/ML
      • ICLR
        • 2025
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2014
        • 2013
      • NeurIPS
        • 2024
          • Main Conference
          • Dataset & Benchmark
        • 2023
          • Main Conference
          • Dataset & Benchmark
        • 2022
          • Main Conference
          • Dataset & Benchmark
        • 2021
          • Main Conference
          • Dataset & Benchmark
      • ICML
        • 2024
        • 2023
    • Graphics
      • SIGGRAPH
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
      • SIGGRAPH Asia
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
    • Vision
      • CVPR
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
        • 2019
        • 2018
        • 2017
        • 2016
        • 2015
        • 2014
        • 2013
      • ICCV
        • 2023
        • 2021
        • 2019
        • 2017
        • 2015
        • 2013
      • ECCV
        • 2024
        • 2022
        • 2020
        • 2018
      • WACV
        • 2024
        • 2023
        • 2022
        • 2021
        • 2020
  • Countdown
  • Map
    • 3D
    • 2D
  • Contact Us
    • About Us
    • Acknowledgment
    • Report Issues
  • twitter x github-circle reddit

Tag: TIP

Home » TIP

PBR-Net: Imitating Physically Based Rendering Using Deep Neural Network

Neural Rendering U-Net
PBR-Net: Imitating Physically Based Rendering Using Deep Neural Network

Peng Dai, Zhuwen Li, Yinda Zhang, Shuaicheng Liu, Bing Zeng

University of Electronic Science and Technology of China; Nuro Inc.; Google Research

Portals
  • pdf
  • Project
  • IEEE
Abstract

Physically based rendering has been widely used to generate photo-realistic images, which greatly impacts industry by providing appealing rendering, such as for entertainment and augmented reality, and academia by serving large scale high-fidelity synthetic training data for data hungry methods like deep learning. However, physically based rendering heavily relies on ray-tracing, which can be computational expensive in complicated environment and hard to parallelize. In this paper, we propose an end-to-end deep learning based approach to generate physically based rendering efficiently. Our system consists of two stacked neural networks, which effectively simulates the physical behavior of the rendering process and produces photo-realistic images. The first network, namely shading network, is designed to predict the optimal shading image from surface normal, depth and illumination; the second network, namely composition network, learns to combine the predicted shading image with the reflectance to generate the final result. Our approach is inspired by intrinsic image decomposition, and thus it is more physically reasonable to have shading as intermediate supervision. Extensive experiments show that our approach is robust to noise thanks to a modified perceptual loss and even outperforms the physically based rendering systems in complex scenes given a reasonable time budget.

Related Works

Physically Based Rendering; Photo-Realistic Image Generation; Intrinsic Image Decomposition

Comparisons

pix2pix, CAN, CycleGAN, U-Net, Mitsuba, OpenGL

2020 TIP

Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index

Image Quality Assessment

Wufeng Xue, Lei Zhang, Xuanqin Mou, Alan C. Bovik

Xi’an Jiaotong University; The Hong Kong Polytechnic University; The University of Texas at Austin

Portals
  • pdf
  • arXiv
  • IEEE
Abstract

It is an important task to faithfully evaluate the perceptual quality of output images in many applications such as image compression, image restoration and multimedia streaming. A good image quality assessment (IQA) model should not only deliver high quality prediction accuracy but also be computationally efficient. The efficiency of IQA metrics is becoming particularly important due to the increasing proliferation of high-volume visual data in high-speed networks. We present a new effective and efficient IQA model, called gradient magnitude similarity deviation (GMSD). The image gradients are sensitive to image distortions, while different local structures in a distorted image suffer different degrees of degradations. This motivates us to explore the use of global variation of gradient based local quality map for overall image quality prediction. We find that the pixel-wise gradient magnitude similarity (GMS) between the reference and distorted images combined with a novel pooling strategy the standard deviation of the GMS map can predict accurately perceptual image quality. The resulting GMSD algorithm is much faster than most state-of-the-art IQA methods, and delivers highly competitive prediction accuracy.

2013 TIP

FSIM: A Feature Similarity Index for Image Quality Assessment

Image Quality Assessment

Lin Zhang; Lei Zhang; Xuanqin Mou; David Zhang

The Hong Kong Polytechnic University; Xi'an Jiaotong University

Portals
  • pdf
  • Project
  • IEEE
Abstract

Image quality assessment (IQA) aims to use computational models to measure the image quality consistently with subjective evaluations. The well-known structural similarity index brings IQA from pixel- to structure-based stage. In this paper, a novel feature similarity (FSIM) index for full reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly according to its low-level features. Specifically, the phase congruency (PC), which is a dimensionless measure of the significance of a local structure, is used as the primary feature in FSIM. Considering that PC is contrast invariant while the contrast information does affect HVS' perception of image quality, the image gradient magnitude (GM) is employed as the secondary feature in FSIM. PC and GM play complementary roles in characterizing the image local quality. After obtaining the local quality map, we use PC again as a weighting function to derive a single quality score. Extensive experiments performed on six benchmark IQA databases demonstrate that FSIM can achieve much higher consistency with the subjective evaluations than state-of-the-art IQA metrics.

2011 TIP

VIF: Image Information and Visual Quality

Image Quality Assessment
Error: Cannot create object